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ASYMPTOTIC OF SOLUTION OF PROBLEM OF CONVECTIVE DIFFUSION 

TO A DROP WITH LARGE P~CLET NUMBERS AND FINITE REYNOLDS NUMBERS 

Yu, P, Gupalo A, D, P01yanln, V, D, Polyanln. 
and  Yu, S. Ryazantsev 

UDC 5 3 2 , 7 2  

A first approximation in the problem of steady-state convective diffusion to a spherical 
particle in a homogeneous translational flow has been obtained for zero [i] and finite 
Reynolds numbers [2. 3]. A two-term expansion in the case of Stokes flow around a solid 
particle is given in [4]. 

We postulate that the concentration of the substance dissolved in the flow is constant 
far from the drop, and that it is completely absorbed at the surface, In a spherical system 
of coordinates connected with the drop, the dimensionless equation of convective diffusion 
and the boundary conditions have the form (Pc is the P~clet number) 

r = t ,  c = O ;  r = o o ,  c = t ,  

Vr = 1 O, t ~ e 2 = P e - I  O 
r 2sinO 0 0 '  VO= rsinO Or' = - ~ "  

(I) 

Here the concentration at infinity, the velocity of the oncoming flow U, and the radius 
of the drop a are taken as the scales of the concentration, the velocity, and the length; the 
angle @ is reckoned from the direction of the flow at infinity, 

For the field of the velocities we use expressions obtained for a drop by the method of 
Joined asymptotic expansions [5]: 

, = % + Re,, (Re = =U/% 

I I fi 

9'-~ 8+I % ~8 fi+i 2 ~+~ ~0 (fi+1), + 

(2) 

where 8 is the ratio of the viscosities of the drop and the liquid surrounding it~ Re is the 
Reynolds number. 

We shall assume that the Peclet number is large (the parameter e is small); we introduce 
the extended caordinate Y in the diffusional boundary layer and represent the flow function 
[2) in the form of a series 
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i " ~ r  = e ~ ( 0 ) ,  ~,,,(0)-- Or" I,=~ Y . . . .  [ '-- 
n = t  ~ e i 

' { ,+ '  ) X~ (0) = 2 (fl + i) i Re ? (ll) l i  - -  "fl (1~) cos 01 sin ~ 0 = A (0), 

31~+2 4fi+5 5~+2 ,  
v ([~) = - T g V ,  v l  @) = ~ - V ~ '  v~ ([~) = T + - - ~ . ~  (~). 

(3) 

To bring the starting problem down to the consecutive solution of the equations of 
thermal conductivity, we introduce the new variables 

; =  A(O) Y,  t =  r ( O ) = . I  A(x)~sin:xdx (O= r - i ( t ) )  
O 

(4) 

and shall seek the solution in the form 

c~= ~ e"c. (~, t). (5)  
r~=O 

Going over in the starting problem (I) to the variables (4) and using the representation 
(5), for the consecutive determination of Cn(~, t) we have the following equation and bound- 
ary conditions : 

(a/at  - O~la~ ~) c~ = Fn (c o (~, t), . . . ,  c~-i (~, t)) = f ,  (~, t), 
1, n = O, 

~ = 0 ,  c ,~=0; ~ = o o ,  c,~= O, n ~ l ,  

Fo = 0, (6) 
2 { [ , ] ( B ( t ) ~ 2  0._0_lc r t), . 

!   4Ao(t)_  tA-x Tr.) s . . . .  

A~ = A(T-I(t)), B(t) = L~(T-I(t))[AO(t)]-~, 

where Fn(C. , , ,  . , C n . x  ) is a coefficient with e n, determined by substitution of expression 
(5) into Eq. (3) i here we set c n ~ O, With such a choice of variables ~, t (4), the zero 
term of the representation (5) corresponds to an approxs of the diffusional boundary 
layer [i], 

The formulation of the problem (6) must be supplemented by the condition for the con- 
centratlon at the point of inflow 0- = v (the point of degeneration of the dlffusional 
bounda ry  layer) c(0" = v) = l [1] ,  
take 

The solution of the problem (6), 

Therefore, as the initial condition for Cn(~ , t) we 

t ,  n = O ,  
c n ( t = 0 ) =  0, n > l .  (7) 

(7) has the form [I. 6] 

e--~'d':, I - -  2~T12, n : O, 

c~ (t, ~) = 1__':~ t 

[ ! - ! [ G ( L L t - - ~ ) - - G t ~ , - ~ , t - ~ ) I i ~ ( L ~ ) d ~ d L  n > l ,  

a (L ~, t) = 2 ~7.~ t 4t 

2 , [ ~(~) 1~ ~~ - - ~  
] l ( ~ " ' r ) =  AO(-c)l/.~7- I+(B('O--I-:- '~A~('O~--717~(TYJ] >:exp  . . . .  

The dimensionless differential flow to the drop is determined in the form 

j ( 0 ) = ~ , . = ~ =  - o~ ~=o = 7-' ,,=o 
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o,~ 

o,2 / -  

Fig. i 

(8) 
] ~ ( 0 ) = A ( 0 )  o~[:=o = A  (0) '~ ' / ! l :A( [ , t_ .~ ) fn ( [ , . r )d [dz ,  n > t ,  

A(~, t)= 2V~ t 3/2 - - - ~  7 

For the total diffuslonal flow to  the drop we have 

oo 

1 :  y ]d(~ = I X e'I,,, 
0(~ n = O  

~t t o Y 0%, 
In = 2~ sin 0A (0) ~ I~=od0 = 2~ ~ ~=odt, 

o o 

t o = ~ )  t +-~-Re~,([~) , 

where the quantity [~Cn/~[~= " is defined in expression (8), 

The main term of the expansion (9) was obtained in [3]. Transposing the integration 
limits in expressions (8), (9), and integrating consecutively, first with respect to ~, and 
then with respect to t, we obtain the following term of the series (9)$ 

to 

4 j ' l / ~ [ l  +B(~) ldx"  Sh, (fi, Re) = Ii /4~ = ~ o  A~ (T) 
o 

Using relationships (3), (4), it can be shown that, with Re = 0, the value of 11(8, 0) 
depends linearly on the parameter 8. Therefore. it is convenient to represent the depend- 
ence of the Sherwood number on 8 and Re in the form 

Sh~(~, Re) = 0.825 + 0.620~ + @(~. Re), O(~. 0) ~= 0. <10) 

A l l  t h e  c o e f f i c i e n t s  i n  t h e  f u n c t i o n  r  Re) i n  e x p r e s s i o n  (10) a r e  o b t a i n e d  n u m e r i c a l ~  
ly. The function r Re) is shown in Fig. i, where the curves 1-5 correspond to the values 
8 = 0. 0.5, i, 5, i0 [the number in parentheses indicated the value of #(8, I00)]. 

It can be seen that Sh,(8, Re) rises with a rise in the Reynolds, and that the value of 
the contribution of r Re) to Sh,(8, Re) with 0 ~ Re ~ i0 does not exceed 7%, 

Using [3], with an accuracy to O(Pe'~/2) we obtain the following expression for the Sher- 
wood number| 

[ 1 " ~  3[~ -{- 2 Re It/2 Sh ([I, Re) -- Peru (Sh o + Pel/2Sh0 = 0.460 Pc1/2 + (t + ~)' 8 + 0.825 +0,620[~ + (I) ([L Re). (11) 

The region of applicability of formula (ii) is limited by the condition Sh, >> Pe-~/2gh,, 
i.e., 8Pe'~[ a << i. 
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We note that a representation for the concentration in the form of the series (9) holds 
everywhere, with the exception of the neighborhood of the rear critical point 0 S O(Pe -~/2) 
[i], where the thickness of the diffusional boundary layer ~ = [j]-* becomes infinitely 
great. Analogously to [7] it can be shown that the contribution of this region to the total 
diffusional flow to the drop is on the order of O(Pe-*/=). Therefore, the calculation of 
succeedinE terms of the series (9) leads to an improvement of formula (ii) only in obtaining 
a solution for the concentration in the region of the rear critical point. 
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EQUATIONS OF THERMOHYDROMECHANICS OF A TWO-PHASE POLYDISPERSE MEDIUM WITH 

PHASE TRANSITIONS HAVING A CONTINUOUS PARTICLE-SIZE DISTRIBUTION 

I. N> Dorokhov, V. V. Kafarov, 
and E. M. Kol'tsova 

UDC 532.529.5:66.065.5 

Sl. We consider a heterogeneous mixture of two phases, in which the first phase is the 
carrier phase, while the second phase is present in the form of individual solid particles 
of different sizes, direct interaction between which can be neglected. We adopt the hypothe- 
sis of quasihomogeneity [1-3]: the distances at which the parameters of the flow vary signi- 
ficantly are much greater than the sizes of the particles themselves and the distances between 
them. At each point of the volume occupied by the liquid we can introduce the volumetric con- 
tents of the phases ~, and the mean densities Pi; here 

0 
P = P l + P ~ ,  ~1 + ~ = l ,  ~ 0 ,  Pi = P ~ ,  

where the subscript I relates to the carrier phase, and 2 to the whole disperse phase; Pi is 
the density of the i-th component of the mixture. The dispersivity of the second phase is 
characterized by the function f(r), so that f(r)dr is the number of particles in unit volume 
of the mixture, whose dimensions (volumes) lie within the limits from r to r + dr. The den- 
sity of the second phase is continuously distributed in the segment [0, R], where R is the 
dimension (volume) of the largest particle. Consequently, we can write 

R R 

~2 = . f / ( r> rdr, p~ = .[ p~] <r> rdr, 
0 0 

where P~ is the true density of the disperse phase. We set f(O) = f(R) = O. It is postu- 
lated that there are sufficient particles of all sizes so that it can be assumed that the car- 
rier phase and any given set of particles (whose sizes lie in the segment r', r" , where r' 
and r" are any given values from the set [O, R]) are continua, filling exactly the same vol- 
ume. The carrier phase $s described by a model of a viscous liquid. Here, as the tensors 
of the surface forces o~ Z and the tensors of the viscous stresses T~ l) we take [i, 3] 

l 
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